In vitro metabolism studies of nomifensine monooxygenation pathways: metabolite identification, reaction phenotyping, and bioactivation mechanism.

نویسندگان

  • Jian Yu
  • Dean G Brown
  • Doug Burdette
چکیده

Multiple GSH adducts of the oxidative products of nomifensine (M1-M9) in human hepatocytes and liver microsomes have been identified recently. The current study reports three new types of monooxygenated metabolites of nomifensine identified in human liver microsomes: C-linked hydroxylated metabolites with modifications at the A ring (H1 and H4), an N-hydroxylamine (H6), and nomifensine N-oxides (H7 and H8). GSH conjugate formation in incubates containing cDNA-expressed P450s and GSH suggests that nomifensine GSH-sulfinamides (M1 and M2) are formed through the reaction between GSH and the oxidative product of H6. C-linked GSH conjugates M3, M4, M5, and M6 are probably formed via nomifensine benzoquinone imine intermediates via H4 and/or nomifensine epoxides. C-linked GSH conjugates M7, M8, and M9 are probably formed through similar mechanisms via H1. Nomifensine N-oxides do not form reactive metabolites that react with GSH. In vitro metabolism studies using a panel of cDNA-expressed human P450 and flavin monooxygenase (FMO) isoforms (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, FMO1, FMO3, and FMO5) indicated that CYP3A4, CYP2C19, and CYP2B6 generate the largest quantities of H1, H4, and H6, respectively. H7 and H8 are formed almost exclusively by FMOs. The contribution of the individual P450s involved in the formation of H1, H4, and H6 in human liver microsomes was confirmed by the inhibition of product formation by monoclonal anti-cytochrome 450 antibodies. These results showed that CYP3A4 and CYP2B6 contributed primarily to the formation of H1 and H6, respectively. CYP2C19 and CYP1A2 seemed to contribute significantly to the formation of H4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of multiple glutathione conjugates of 8-amino- 2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline maleate (nomifensine) in liver microsomes and hepatocyte preparations: evidence of the bioactivation of nomifensine.

8-Amino-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline maleate (nomifensine), an antidepressant drug, was withdrawn from the market because of increased incidence of hemolytic anemia, as well as kidney and liver toxicity. Although the nature of the potentially reactive metabolites formed after nomifensine metabolism remains unknown and no glutathione (GSH) adducts of these nomifensine reactiv...

متن کامل

Cytochrome P450 in vitro reaction phenotyping: a re-evaluation of approaches used for P450 isoform identification.

Marker substrates, chemical inhibitors, and inhibitory antibodies are important tools for the identification of cytochrome P450 (P450) isoform responsible for the metabolism of therapeutic agents in vitro. In view of the versatile and nonspecific nature of P450 enzymes, many of the marker substrates and chemical inhibitors used for P450 in vitro reaction phenotyping are isoform selective but no...

متن کامل

Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine.

Conversion of the carbamazepine metabolite 3-hydroxycarbamazepine (3-OHCBZ) to the catechol 2,3-dihydroxycarbamazepine (2,3-diOHCBZ) followed by subsequent oxidation to a reactive o-quinone species has been proposed as a possible bioactivation pathway in the pathogenesis of carbamazepine-induced hypersensitivity. Initial in vitro phenotyping studies implicated CYP3A4 as a primary catalyst of 2,...

متن کامل

Commentary CYTOCHROME P450 IN VITRO REACTION PHENOTYPING: A RE-EVALUATION OF APPROACHES USED FOR P450 ISOFORM IDENTIFICATION

Marker substrates, chemical inhibitors, and inhibitory antibodies are important tools for the identification of cytochrome P450 (P450) isoform responsible for the metabolism of therapeutic agents in vitro. In view of the versatile and nonspecific nature of P450 enzymes, many of the marker substrates and chemical inhibitors used for P450 in vitro reaction phenotyping are isoform selective but no...

متن کامل

Bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant.

In the present work, the characterization of the biotransformation and bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant (Acomplia) is described. Rimonabant was approved in Europe in 2006 for the treatment of obesity but was withdrawn in 2008 because of a significant drug-related risk of serious psychiatric disorders. The aim of the present work is to characterize the b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 38 10  شماره 

صفحات  -

تاریخ انتشار 2010